Other-Arithmetic-ZMM#
_mm512_maskz_gf2p8mul_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__mmask64 k, __m512i a, __m512i b
- Param ETypes:
MASK k, UI8 a, UI8 b
__m512i _mm512_maskz_gf2p8mul_epi8(__mmask64 k, __m512i a,
__m512i b)
Intel Description
Multiply the packed 8-bit integers in “a” and “b” in the finite field GF(2^8), and store the results in “dst” using zeromask “k” (elements are zeroed out when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.
Intel Implementation Psudeo-Code
DEFINE gf2p8mul_byte(src1byte, src2byte) {
tword := 0
FOR i := 0 to 7
IF src2byte.bit[i]
tword := tword XOR (src1byte << i)
FI
ENDFOR
FOR i := 14 downto 8
p := 0x11B << (i-8)
IF tword.bit[i]
tword := tword XOR p
FI
ENDFOR
RETURN tword.byte[0]
}
FOR j := 0 TO 63
IF k[j]
dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j])
ELSE
dst.byte[j] := 0
FI
ENDFOR
dst[MAX:512] := 0
_mm512_mask_gf2p8mul_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i src, __mmask64 k, __m512i a, __m512i b
- Param ETypes:
UI8 src, MASK k, UI8 a, UI8 b
__m512i _mm512_mask_gf2p8mul_epi8(__m512i src, __mmask64 k,
__m512i a, __m512i b)
Intel Description
Multiply the packed 8-bit integers in “a” and “b” in the finite field GF(2^8), and store the results in “dst” using writemask “k” (elements are copied from “src”” when the corresponding mask bit is not set). The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.
Intel Implementation Psudeo-Code
DEFINE gf2p8mul_byte(src1byte, src2byte) {
tword := 0
FOR i := 0 to 7
IF src2byte.bit[i]
tword := tword XOR (src1byte << i)
FI
ENDFOR
FOR i := 14 downto 8
p := 0x11B << (i-8)
IF tword.bit[i]
tword := tword XOR p
FI
ENDFOR
RETURN tword.byte[0]
}
FOR j := 0 TO 63
IF k[j]
dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j])
ELSE
dst.byte[j] := src.byte[j]
FI
ENDFOR
dst[MAX:512] := 0
_mm512_gf2p8mul_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i a, __m512i b
- Param ETypes:
UI8 a, UI8 b
__m512i _mm512_gf2p8mul_epi8(__m512i a, __m512i b);
Intel Description
Multiply the packed 8-bit integers in “a” and “b” in the finite field GF(2^8), and store the results in “dst”. The field GF(2^8) is represented in polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.
Intel Implementation Psudeo-Code
DEFINE gf2p8mul_byte(src1byte, src2byte) {
tword := 0
FOR i := 0 to 7
IF src2byte.bit[i]
tword := tword XOR (src1byte << i)
FI
ENDFOR
FOR i := 14 downto 8
p := 0x11B << (i-8)
IF tword.bit[i]
tword := tword XOR p
FI
ENDFOR
RETURN tword.byte[0]
}
FOR j := 0 TO 63
dst.byte[j] := gf2p8mul_byte(a.byte[j], b.byte[j])
ENDFOR
dst[MAX:512] := 0
_mm512_maskz_gf2p8affine_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__mmask64 k, __m512i x, __m512i A, int b
- Param ETypes:
MASK k, UI64 x, UI64 A, IMM b
__m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64 k,
__m512i x,
__m512i A,
int b)
Intel Description
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. Store the packed 8-bit results in “dst” using zeromask “k” (elements are zeroed out when the corresponding mask bit is not set).
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
IF k[j*8+i]
dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b)
ELSE
dst.qword[j].byte[i] := 0
FI
ENDFOR
ENDFOR
dst[MAX:512] := 0
_mm512_mask_gf2p8affine_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i src, __mmask64 k, __m512i x, __m512i A, int b
- Param ETypes:
UI64 src, MASK k, UI64 x, UI64 A, IMM b
__m512i _mm512_mask_gf2p8affine_epi64_epi8(
__m512i src, __mmask64 k, __m512i x, __m512i A, int b)
Intel Description
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. Store the packed 8-bit results in “dst” using writemask “k” (elements are copied from “src” when the corresponding mask bit is not set).
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
IF k[j*8+i]
dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b)
ELSE
dst.qword[j].byte[i] := src.qword[j].byte[i]
FI
ENDFOR
ENDFOR
dst[MAX:512] := 0
_mm512_gf2p8affine_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i x, __m512i A, int b
- Param ETypes:
UI64 x, UI64 A, IMM b
__m512i _mm512_gf2p8affine_epi64_epi8(__m512i x, __m512i A,
int b)
Intel Description
Compute an affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. Store the packed 8-bit results in “dst”.
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
dst.qword[j].byte[i] := affine_byte(A.qword[j], x.qword[j].byte[i], b)
ENDFOR
ENDFOR
dst[MAX:512] := 0
_mm512_maskz_gf2p8affineinv_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__mmask64 k, __m512i x, __m512i A, int b
- Param ETypes:
MASK k, UI64 x, UI64 A, IMM b
__m512i _mm512_maskz_gf2p8affineinv_epi64_epi8(__mmask64 k,
__m512i x,
__m512i A,
int b)
Intel Description
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. The inverse of the 8-bit values in “x” is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in “dst” using zeromask “k” (elements are zeroed out when the corresponding mask bit is not set).
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
IF k[j*8+i]
dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b)
ELSE
dst.qword[j].byte[i] := 0
FI
ENDFOR
ENDFOR
dst[MAX:512] := 0
_mm512_mask_gf2p8affineinv_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i src, __mmask64 k, __m512i x, __m512i A, int b
- Param ETypes:
UI64 src, MASK k, UI64 x, UI64 A, IMM b
__m512i _mm512_mask_gf2p8affineinv_epi64_epi8(
__m512i src, __mmask64 k, __m512i x, __m512i A, int b)
Intel Description
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. The inverse of the 8-bit values in “x” is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in “dst” using writemask “k” (elements are copied from “src” when the corresponding mask bit is not set).
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
IF k[j*8+i]
dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b)
ELSE
dst.qword[j].byte[i] := src.qword[j].byte[b]
FI
ENDFOR
ENDFOR
dst[MAX:512] := 0
_mm512_gf2p8affineinv_epi64_epi8#
- Tech:
Other
- Category:
Arithmetic
- Header:
immintrin.h
- Searchable:
Other-Arithmetic-ZMM
- Register:
ZMM 512 bit
- Return Type:
__m512i
- Param Types:
__m512i x, __m512i A, int b
- Param ETypes:
UI64 x, UI64 A, IMM b
__m512i _mm512_gf2p8affineinv_epi64_epi8(__m512i x,
__m512i A, int b)
Intel Description
Compute an inverse affine transformation in the Galois Field 2^8. An affine transformation is defined by “A” * “x” + “b”, where “A” represents an 8 by 8 bit matrix, “x” represents an 8-bit vector, and “b” is a constant immediate byte. The inverse of the 8-bit values in “x” is defined with respect to the reduction polynomial x^8 + x^4 + x^3 + x + 1. Store the packed 8-bit results in “dst”.
Intel Implementation Psudeo-Code
DEFINE parity(x) {
t := 0
FOR i := 0 to 7
t := t XOR x.bit[i]
ENDFOR
RETURN t
}
DEFINE affine_inverse_byte(tsrc2qw, src1byte, imm8) {
FOR i := 0 to 7
retbyte.bit[i] := parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]
ENDFOR
RETURN retbyte
}
FOR j := 0 TO 7
FOR i := 0 to 7
dst.qword[j].byte[i] := affine_inverse_byte(A.qword[j], x.qword[j].byte[i], b)
ENDFOR
ENDFOR
dst[MAX:512] := 0